

Open-Set Author Verification Problem

Identify if (potentially short) texts X and Y are by the same author

Running Example: Compendiosa expositio

Stover, Winter, Koppel, & Kestemont 2016

- o Single medieval manuscript in the Vatican Library in Rome
- o Philological analysis indicated that the text is likely from antiquity
- Traditional stylistic and metrical analyses suggest the author is Apuleius of Maudoros
- o Goal: Verify that the Expositio was written by Apuleius

Compendiosa expositio

It clusters with the works by Apuleius

• **Problem:** Clustering isn't perfect

 Need verification because we cannot assume that the true author is among the available candidates

Related Work: Unmasking Method

Koppel & Schler 2004

- o Idea: If books X and Y are by the same author, then their differences are reflected in only a small number of features
- "Unmasking" = Iteratively remove most distinguishing features and see how quickly cross-validation accuracy degrades

Ten fold cross-validation accuracy of models distinguishing *House of Seven Gables* from each of Hawthorne, Melville and Cooper. The x-axis represents the number of iterations of eliminating best features at previous iteration.

Related Work: Unmasking Method

Koppel & Schler 2004

Problem: Method relies on paper chunking.

Ineffective for short input documents (< 10,000 words)
Sanderson & Guenter 2006

axis represents the number of iterations of eliminating best features at previous iteration.

Related Work: Authorship Attribution

Type I: Machine-Learning Methods

- o Idea: For each candidate author, construct a classifier from their literary works
- Abbasi & Chen 2008
- Koppel, Schler, & Argamon 2008
- Zhao & Zobel 2005
- o Zheng Li, Chen, & Huang 2006
- o Problem: Does not scale well with large number of possible authors

Related Work: Authorship Attribution

Type II: Similarity-Based Methods

o Idea: Measure the "distance" between two documents. Attribution is given to the author with the closest corpus (one collective document)

- Abbasi & Chen 2008
- Argamon 2007
- Brennan & Greenstadt 2009
- Burrows 2002

- Hoover 2003
- ° Malyutov 2006
- Uzuner & Katz 2006

The Many-Candidates Problem

- o Open-set identification problem
- o Given a large set of candidates determine which, if any, of them is the author of a given anonymous document

The Many Candidates Method

Koppel, Schler, & Argamon 2011

Given: A snippet to be assigned; known-texts for each of C candidates

- 1. Repeat k times
 - a. Randomly choose half of the features in the full feature set
 - b. Find top known-text match to snippet using min-max similarity
- 2. For each candidate author A,
 - a. Score(A) = proportion of times A is top match

Output: $argmax_A Score(A)$ if $max Score(A) > \sigma^*$; else Don't Know

The Impostors Method

- Can convert the verification problem into the many-candidates problem by generating a large set of impostor candidates
- ° Well-established practice in the speaker-identification community
- Method of impostor generation is important
 - ° Too few or unconvincing impostors will produce too many false positives
 - ° Too many impostors or genre imbalance will produce too many false negatives

The Impostors Method

- 1. Generate a set of impostors $Y_1, ..., Y_m$
- 2. Compute $score_X(Y)$ = the number of choices of feature sets (out of 100) for which $sim(X,Y) > sim(X,Y_i)$, for all i=1,...,m
- 3. Repeat the above with impostors $X_1, ..., X_m$ and compute $score_Y(X)$ in an analogous manner
- 4. If $avg(score_X(Y), score_Y(X)) > \sigma^*$, assign $\langle X, Y \rangle$ to same-author

Experimental Setup

- o Universe: All blogs by several thousand bloggers from blogger.com
 - o On average, 38 separate blog posts per author
- \circ Consider pairs of fragments of blog posts: $\langle X, Y \rangle$
 - \circ X = First 500 words produced by a given blogger
 - \circ Y = Last 500 words produced by a given blogger
- ° Corpus: 500 pairs such that 250 are same-author and 250 are not
 - ° No single blogger appears in more than one pair

Similarity-Based Baseline Method

- \circ Measure the similarity between X and Y and label the pair as same-author when the similarity exceeds some threshold σ^*
- Represent X and Y as vectors such that each entry represents the tf-idf value of a character 4-gram of the corresponding document
- Similarity Measures:
 - 1. Cosine: $sim(X,Y) = cos(\vec{X},\vec{Y}) = \frac{\vec{X}*\vec{Y}}{\|\vec{X}\|*\|\vec{Y}\|}$
 - 2. Min-Max: $sim(X,Y) = minmax(\vec{X}, \vec{Y}) = \frac{\sum_{i=1}^{n} min(x_i, y_i)}{\sum_{i=1}^{n} max(x_i, y_i)}$

Similarity-Based Baseline Method

Development Set Accuracy:

- Cosine: 70.6%
- Minmax: 74.2%
- 1. Cosine: $sim(X,Y) = cos(\vec{X},\vec{Y}) = \frac{\vec{X}*\vec{Y}}{\|\vec{X}\|*\|\vec{Y}\|}$
- 2. Min-Max: $sim(X,Y) = minmax(\vec{X},\vec{Y}) = \frac{\sum_{i=1}^{n} min(x_i,y_i)}{\sum_{i=1}^{n} max(x_i,y_i)}$

Supervised Baseline Method

- \circ Training set: 1,000 labelled $\langle X, Y \rangle$
 - \circ Train on labelled difference vectors: $diff(X, Y) = |\vec{X} \vec{Y}|$
- Learn a linear SVM classifier from the labelled vectors
 - Learns nothing about specific authors, only what differences in n-gram frequencies characterize same-author pairs in general

Development Set Accuracy: 79.8%

Impostor Generation

Results

(b) 1 0.9 0.8 0.7 0.6 Blogs Impostors Precision 0.5 On-the-fly Impostors 0.4 SVM ----- Min-Max 0.3 ---- Cosine 0.2 0.1 0.2 0.4 0.6 8.0 1.0 Recall

Same-Author

Different-Author

Results

Experimental Setup: Compendiosa expositio

- Development Corpus: 22 texts by authors with stylistic, chronological, generic, or thematic similarity with Apuleius
- o Random Feature Set: 125,000 of 250,000 unigrams and bigrams
- o Background Set: 180 texts by 36 authors writing in similar genres and/or periods
- o Imposter Set: 50 texts randomly selected from background set

Results: Compendiosa expositio

Precision-Recall curve. The effect of various thresholds σ^* for the verification score in terms of precision and recall for the same-author category in the development corpus

Results: Compendiosa expositio

- o Similarity measures for Apuleius's work:
 - o De deo Socratis, Florida, and Apologia have a score of 0.85+
 - Metamorphoses (The Golden Ass) has a score above 0.50 with only Florida
 - No pairings of Apuleius's works with other texts surpassed 0.35
- "Non-greedy" attributor
 - o High precision, but relatively low recall for same-author pairs
- A new text X would be extremely likely to have been written by Apuleius if $\langle X, Y_{Apuleius} \rangle$ obtains a score above 0.20

Results: Compendiosa expositio

- The pair Expositio and De Platone has a score of 0.73
- No other text pairing with the Expositio has a score above 0.04
- Lends support to the hypothesis that the *Expositio* is the forgotten third book of *De Platone*
- ° These results emphasize the importance of genre
 - The Expositio's genre of Platonic philosophy matches the De Platone, but does not match the majority of Apuleius's work

Limitations

- o If documents X and Y are in different genres, it is much more difficult to distinguish same-author/different-author pairs
- Need strong confidence that impostor documents are not written by the authors of documents X and Y

Conclusion

- Introduce an almost unsupervised approach for determining if a pair of short documents is written by the same author
 - Two phases:
 - 1. Generate impostor set
 - 2. Use feature randomization to iteratively measure document pair similarity
- There is a fine balance between impostor quality and quantity
 - The better the impostors, the fewer are needed
- ° Corroborate that Apuleius wrote the Compendiosa expositio

